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Abstract

The influence of the 15N CSA on 15N longitudinal relaxation is investigated for an amide group in solid proteins in powder form under
MAS. This contribution is determined to be typically 20–33% of the overall longitudinal relaxation rate, at 11.74 and 16.45 T, respec-
tively. The improved treatment is used to analyze the internal dynamics in the protein Crh, in the frame of a motional model of diffusion
in a cone, using the explicit average sum approach. Significant variations with respect to the determined dynamics parameters are
observed when properly accounting for the contribution of 15N CSA fluctuations. In general, the fit of experimental data including
CSA led to the determination of diffusion times (sw) which are longer than when considering only an 15N–1H dipolar relaxation mech-
anism. CSA-Dipole cross-correlation is shown to play little or no role in protonated solids, in direct contrast to the liquid state case.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recent breakthroughs in NMR assignment of micro-
crystalline protein samples [1,2] have opened the way
toward detailed studies of backbone dynamics in proteins,
and a few examples have already appeared, involving the
first nitrogen-15 relaxation study of a microcrystalline, ful-
ly enriched protein [3], and subsequently the measurement
of residual 2H quadrupolar [4,5] or CH dipolar couplings
[6], or 2H relaxation [7]. These methods show a clear poten-
tial to establish a complete site-specific dynamic picture of
proteins in crystals over a wide range of timescales. Nota-
bly, nuclear magnetic relaxation data recorded in solid pro-
teins contain potentially very detailed information about
local internal motions [3,8–13]. In particular, spin-lattice
relaxation is mostly sensitive to motions occurring in the
range of the 1H and 15N Larmor frequencies, that is on
the picosecond to nanosecond timescale [13–15]. Several
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interactions can induce, through their fluctuations, a cou-
pling between the spin system and the lattice. In the case
of nitrogen-15 relaxation in a diamagnetic, uniformly
labelled protein under magic angle spinning (MAS), we
have recently shown using 1H–15N nuclear Overhauser
effect measurements that the dominant relaxation mecha-
nism is a stochastic modulation of the N–H dipolar inter-
action within the amide group [11]. It has also been
shown that perturbations from additional protons, and
from 15N spin diffusion, can usually be neglected [16].
Using a theoretical description adapted for the orientation
dependence of a powder undergoing MAS, and assuming
the amide 1H–15N dipolar interaction as the only source
of relaxation, parameters describing the internal dynamics
were determined from experimental 15N T1 relaxation rates
measured in two B0 fields [12].

In this paper, we consider the additional contribution
to 15N relaxation due to chemical shift anisotropy (CSA)
of the 15N nucleus. We show that, as expected, and in
analogy to what is observed in solution, the CSA contri-
bution to the spin-lattice relaxation is not negligible, and

mailto:lyndon.emsley@ens-lyon.fr


J. Sein et al. / Journal of Magnetic Resonance 186 (2007) 26–33 27
we incorporate it into our analysis to improve the charac-
terization of the internal dynamics in the protein Crh
[17,18]. Finally, we discuss the possibility of a contribution
from 15N CSA—1H–15N dipole cross-correlation [19,20],
and demonstrate that is should be absent in protonated
proteins. The result is a fairly complete description of T1

relaxation in the N–H group in solid proteins.

2. Longitudinal relaxation including CSA and dipolar

relaxation mechanisms

We consider a nitrogen-15 nucleus in a peptide bond,
and we assume that nitrogen-15 relaxation is induced both
by the fluctuations of the dipolar interaction between the
nitrogen-15 and its bound proton, and by the fluctuations
of the coupling between the CSA of the nitrogen-15 atom
and the external magnetic field B0. We recall that the lon-
gitudinal relaxation rate, R1DD, due to the dipolar
1H–15N interaction only, expressed in a static frame, reads
[12,13]:

R1DD ¼
1

4

h
2p

cHcN

hrNHi3

 !2

½J 0ðxH � xNÞ þ 3J 1ðxNÞ

þ 6J 2ðxH þ xNÞ� ð1Þ

where cH and cN are gyromagnetics ratios of 1H and 15N,
respectively, and ÆrNHæ is the effective N–H distance (con-
sidering vibrational motions). For numerical calculations
ÆrNHæ was set to 1.02 Å. Jm(x)(m = 0, 1,2) is a spectral den-
sity function, defined by:

J mðxÞ ¼ 2

Z 1

0

GmðtÞ cosðxtÞdt ð2Þ

where Gm(t) (m = 0,±1, ±2) is the autocorrelation func-
tion, which depends on the nature of the motion of the
N–H interaction vector.

2.1. Expression of the CSA longitudinal relaxation rate

For the CSA contribution to the relaxation rate, we
assume that the CSA tensor is axially symmetric, with prin-
cipal values rx, ry and rz in its principal axis system. The
z-axis of the tensor is assumed to be aligned with the direc-
tion of the internuclear N–H vector. The contribution of
CSA to the longitudinal relaxation rate reads [21]:

R1CSA ¼
1

3
x2

Nðr== � r?Þ2J 1ðxNÞ ð3Þ

where r// = rz and r^ = rx = ry. The frequency xN is the
nitrogen-15 Larmor frequency. In numerical calculations,
(r// � r^) is set to �170 ppm, which is the average value
usually proposed in the literature for the case of a 15N
nucleus in a peptide bond [22–25].

The expression of the longitudinal relaxation rate of
nitrogen-15, accounting for the contribution of both
1H–15N dipolar and CSA fluctuations is then, with the
same notations as above:
R1 ¼
1

4

cHcN

hrNHi3
�h

 !2

½J 0ðxH � xNÞ þ 3J 1ðxNÞ

þ 6J 2ðxH þ xNÞ� þ
1

3
x2

Nðr== � r?Þ2J 1ðxNÞ ð4Þ

Note that, despite the fact that this approximation is very
widespread in this application, there is no particular evi-
dence to support the assumption of a completely axially
symmetric tensor for the nitrogen-15 chemical shift. Gold-
man showed that R1CSA can be expressed for an asymmet-
ric CSA tensor using the fact that such a tensor can be
described through a sum of two axially symmetric tensors.
Thus in the general case the CSA contribution can simply
be written [26]:

R1CSA ¼
1

3
x2

Nðr2
X þ r2

Y þ r2
Z � rX rY � rY rZ � rZrX ÞJ 1ðxNÞ

ð5Þ
2.2. Calculation of the spectral density functions

In the following, we assume a motional model of the N–
H internuclear vector wobbling in a cone. However, we
point out that the following description could be used in
exactly the same way for other motional models that might
be used to describe the internal motion with greater accu-
racy. For the diffusion in a cone model, Lipari and Szabo
proposed an approximation for the auto-correlation func-
tions Gm(t), which depend on the order m of the spherical
harmonics [27]. In the solid-state, we recall that the absence
of overall tumbling implies that we must evaluate individ-
ually J0(x), J±1(x) and J±2(x), in order to characterize
the anisotropy of relaxation processes with respect to the
external magnetic field [8,12,28]. The time-dependent orien-
tation of the interaction vector in a powder under MAS is
described through a series of reference frames: using the
notations which have already been used elsewhere [12,28],
we express the relevant autocorrelation functions in the
laboratory frame, so as to link Gm(t), (i.e., the description
of the microscopic internal motion), to a ‘‘macroscopic’’
Ca(t) function which determines the time scale of the relax-
ation phenomenon:

CaðtÞ ¼
X2

bb0¼�2

X2

m¼�2

Dð2Þ�mb ðXCMÞDð2Þmb0 ðXCMÞDð2Þ�ba

� ðXMLÞDð2Þb0aðXMLÞ � GmðtÞ ð6Þ

with a = 0,±1, ±2 and where Dð2Þab are Wigner rotation ma-
trix elements and Dð2Þ�ab are the corresponding conjugate ma-
trix elements. XCM and XML are the Euler angles bringing
the crystal frame C into coincidence with the magic angle
frame M and the frame M into coincidence with the labo-
ratory frame L, respectively. Eq. (6) implies two kinds of
angular dependences for Ca(t): on the one hand, for each
crystallite, the relaxation rate is modulated by the varia-
tions of XML from 0 to 2p due to sample rotation at the



28 J. Sein et al. / Journal of Magnetic Resonance 186 (2007) 26–33
Magic Angle; on the other hand, the crystallite orientation
in the rotor is described through the variations of XCM [12].
R1 in Eqs. (4) or (5) is therefore dependent on the crystallite
orientation.
2.3. Contribution of the CSA fluctuations to Rcryst
1

Fig. 1 shows the calculated orientation dependence
(without MAS) of the longitudinal relaxation rates Rcryst

1 DD

(the longitudinal relaxation rate due only to the fluctua-
tions of the 1H–15N dipolar interaction), and Rcryst

1DDþCSA

(longitudinal relaxation rate due to both dipolar and
CSA interactions) for a N–H vector which diffuses in a
cone, with a diffusion time sw = 1/6Dw = 6.6 · 10�8 s and
a semi-angle of (a) h0 = 11.2� and (b) h0 = 45�, for a proton
frequency of 700 MHz. We observe that Rcryst

1 DDþCSA has
essentially the same orientation dependence as Rcryst

1 DD.
Indeed, Rcryst

1 DD and Rcryst
1 DDþCSA are both mainly influenced

by the anisotropy of J1(xN) which has a larger contribution
than J0(xH � xN) and J2(xH + xN).

Fig. 2 shows the B0 field dependence of the ratio
Rcryst

1 CSA=Rcryst
1 DDþCSA for an amide group in a single crystallite

in the rotor, expressed in each plot as a function of rotor
position and the orientation of the interaction vector with
respect to the rotor axis. Rcryst

1 CSA is the longitudinal relaxa-
tion rate calculated from the contribution of the CSA
alone. As expected, we notice that the higher the magnetic
field, the bigger the contribution of the CSA: in particular,
Fig. 1. Orientational dependence of the longitudinal relaxation rate for a n
calculated with (contour style) and without (patch style) the contribution of C
rate is plotted for two motional amplitudes: (a) h0 = 11.2� and (b) h0 = 45.0�, wi
of the N–H vector with respect to the external magnetic field.
the ratio Rcryst
1 CSA=Rcryst

1 DDþCSA reveals a maximum contribu-
tion of 33% at 16.45 T whereas for 11.8 T the maximum
contribution of the CSA is 20%. Additionally, this figure
illustrates the importance of J1(xN) compared to
J0(xH � xN) and J2(xH + xN), since only a small orienta-
tion dependence of the ratio Rcryst

1 CSA=Rcryst
1 DDþCSA is observed

(if J0 and J2 made no contribution, this graph would be
flat).

2.4. CSA contribution to the generalized multi-exponential

recovery curves

In a MAS experiment, each crystallite from a given car-
ousel (defined by its orientation with respect to the rotor
axis bCM) undergoes an average relaxation rate RMAS

1 [8,12]:

RMAS
1 ðbCMÞ ¼

1

2p

Z 2p

cCM¼0

Rcryst
1 ðcCM ; bCMÞdcCM

Furthermore, the observed signal is the sum of the contri-
butions of all the orientations of the crystallites with re-
spect to the axis of the rotor. (This is referred to as the
‘‘Explicit Average Sum’’ (EAS) approach [12]). The inten-
sity obtained is:

IexpðtÞ ¼ Iexp
0

R p
bCM¼0

exp½�RMAS
1 ðbCMÞt� sinðbCMÞdbCMR p

bCM¼0
sinðbCMÞdbCM

ð7aÞ

I exp(t) is evaluated through the computation of the follow-
ing discrete sum over Nb crystallite orientations.
itrogen-15 nucleus bound to a proton, (without magic angle spinning),
SA, for an external magnetic field of 16.45 T. The longitudinal relaxation
th sw=6.6 · 10�8 s, in spherical coordinates as a function of the orientation



Fig. 2. Rcryst
1 CSA=Rcryst

1 DDþCSA as a function of bCM and cCM (orientations of the 15N–1H bond in the rotor frame) calculated for sw = 6.8 · 10�8 s and
h0 = 11.2�(A) or s0 = 45�(B) at proton frequencies of (a) 500 MHz and (b) 700 MHz.
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Fig. 3. Calculated relaxation curves for a NH group with (solid red curve)
and without (dashed blue curve) the incorporation of CSA relaxation for
B0 = 16.45 T, with h0 = 45� and sw = 6.6 · 10�8 s. The calculation was
done by applying the EAS approach to Eq. (7b), with Nb = 50. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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IexpðtÞ � Iexp
0

�
PNb�1

b¼0 exp �RMAS
1

ðbþ0:5Þp
Nb

� �
t

h i
sin ðbþ0:5Þp

Nb

� �
PNb�1

b¼0 sin ðbþ0:5Þp
Nb

� �
ð7bÞ

Fig. 3 shows the (multi-exponential) decaying curve of
I exp(t), calculated for a powder under MAS with and with-
out the incorporation of the CSA contribution to the relax-
ation rate. As expected, we observe faster decay, i.e. a
faster relaxation rate in the presence of CSA fluctuations.
3. Contribution of the CSA to the determination of dynamic

parameters

To simplify the analysis of the behaviour of the decaying
curves, we can extract a characteristic value of the longitu-
dinal relaxation rate Reff
1 ðh0; swÞ, which depends only on the

dynamic parameters sw and h0, by fitting the multi-expo-
nential curve I exp(t) of a powder under MAS to a monoex-
ponential function [12]. Fig. 4 shows a plot of Reff

1 ðh0; swÞ
with the contribution of the dipolar and CSA interaction
Reff

1 CSAþDDðh0; swÞ, as a function of the N–H bond dynam-
ics, at 500 and 700 MHz.

To quantify the contribution of the CSA fluctuations to
the behavior of these curves, Fig. 5 shows a plot of the

quantity
Reff

1 CSAþDD
�Reff

1DD

Reff
1 CSAþDD

, (a) at 500 MHz and (b) at 700 MHz.

The deviation in Reff
1 due to the CSA relaxation mecha-

nism is slightly smaller for fast motion regimes (motions
with sW typically smaller than 2 · 10�7 s), and reaches
19.5% and 32.5% at 500 and 700 MHz, respectively, for
slower, less restricted motions.
3.1. Effect of CSA on experimentally determined dynamics

We have applied the EAS approach using both dipolar
and CSA relaxation to determine dynamic probability distri-
butions which account for both the experimental uncertain-
ty, and the ability of the motional model to be constrained
with the measurement of spin-lattice relaxation rates at two
different fields [12]. The probability for a given N–H bond
to diffuse in a cone of semi angle h0, with a diffusion time
sw from the experimental measurement of the relaxation rate
at two different fields (11.8 and 16.45 T), is proportional to:

P ðsw; h0Þ / gðReff
1ð11:7 TÞðsw; h0Þ;Rexp

1ð11:74 TÞÞ

� gðReff
1ð16:45 TÞðsw; h0Þ;Rexp

1ð16:45 TÞÞ ð8Þ

where Rexp
1 is the experimentally determined relaxation rate

at a given magnetic field, gðR1;R
exp
1 Þ is the distribution in

the experimentally measured relaxation rates, and is as-
sumed to be properly described by a gaussian distribution
whose standard deviation is the experimental noise [12].
We account for the contribution of the 15N CSA to 15N
relaxation by incorporating it into the computation of
Reff

1 ðh0; swÞ as described in Eq. (4). The contour plots show-
ing the calculated probabilities for 3 residues (Asp 38, Gly
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39 and Lys 41) are displayed in Fig. 6. They were deter-
mined from the measurement of the 15N T1 at 500 and
700 MHz on microcrystalline Crh, as described elsewhere
[12]. We note that the shape of the accuracy in the determi-
nation of the cone angle h0 is still poor from multi-field
data for slower diffusion times.
Nevertheless, diffusion times are determined with a good
accuracy from this data. Fig. 7 shows the comparison
between the diffusion times determined, for a given amino
acid, with and without the CSA contribution along the
backbone. In general, the determined diffusion times are
longer when the CSA contribution is accounted for. In



0.3 0.2 0.1
-6

-6.2

-6.4

-6.6

-6.8

-7

-7.2

-7.4

0.5 0.4

Asp 38 

0.3 0.2 0.1
-6

-6.2

-6.4

-6.6

-6.8

-7

-7.2

-7.4

0.5 0.4

Lys 41 

0.3 0.2 0.1
-6

-6.2

-6.4

-6.6

-6.8

-7

-7.2

-7.4

0.5 0.4

Gly 39 a b c

Fig. 6. Contour plot of the probability of dynamic parameters h0 and sw for 3 residues from experimentally determined relaxation rates. The probability
distribution calculated from the model with and without CSA relaxation is displayed in red and blue, respectively. The contour is plotted for a probability
of 90%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

0

1
2

3

4
5

6

7
8

9

M
1

Q
4

E7 L10

G
13

A16

A19

F22

E25

R
28

S31

F34

K37

K40

N
43

S46

G
49

S52

V55

G
58

V61

I64

G
67

E70

A73

K76

A79

Q
82

with CSA without CSA

β1 β1a A                      β2 β3 B β4 C

Fig. 7. Bar graph of the diffusion time sw determined for several residues in the protein Crh through the analysis of nitrogen-15 longitudinal relaxation
rates at two different fields (11.74 and 16.45 T). The secondary structure of dimeric Crh is also shown (the uncertainty in the determination of the dynamic
parameters, which reports on both the quality of the experimental data and the ability of the motional model to constrain spectral densities within a given
dynamic regime, can be evaluated from the corresponding dynamic probability distributions, as discussed elsewhere [12]).

J. Sein et al. / Journal of Magnetic Resonance 186 (2007) 26–33 31
other words, neglecting CSA leads to determination of arti-
ficially faster dynamics.
4. Cross-correlation effects between 15N CSA and the
15N–1H dipolar interaction

In the previous sections, we considered the case where
the dipolar interaction and the 15N CSA were treated inde-
pendently. However, the symmetry and spatial dependence
of these both interactions can be described by a set of sec-
ond rank tensors, and their fluctuations both depend on the
same internal motion of the N–H vector in the rotating
frame [26]. Hence, interference can occur between HD

and HCSA: this additional effect is referred to as cross-cor-
related relaxation and is at the root of many relaxation
phenomena in macromolecules in solution [19,20,26]. In
this study, we have shown that while the dipolar interaction
is dominant, the contribution of the CSA of the 15N nucle-
us is not much smaller and certainly should not be
neglected: as a result, a significant contribution from
cross-correlated relaxation could be expected. Further-
more, the strength of the cross-correlation, which depends
on the relative intensity of the two interactions involved, is
also a function of the orientation of the CSA tensor with
respect to the N–H bond, and will be anisotropic.

The effect of cross-correlation will be to differentiate the
relaxation of the two 15N transitions in the N–H system
with rates, Rð1Þ1 and Rð2Þ1 , which correspond to 15N interact-
ing with the 1H spin in its jaæ or jbæ state [26]:

Rð1Þ1 ¼ R1DDþCSA þ R1CC

Rð2Þ1 ¼ R1DDþCSA � R1CC

(
ð9Þ

where

R1CC ¼
hxNðr== � r?ÞcNcH

2pr3
NH

fJðxNÞg ð10Þ

In this case, the decaying curve expected for a single crys-
tallite is predicted to be biexponential:

NZðtÞ ¼
1

2
NZð0Þfexp½�Rð1Þ1 t� þ exp½�Rð2Þ1 t�g ð11Þ

This, if cross-correlation was active, and if we could mea-
sure the relaxation times of the two transitions of the N–
H doublet independently, we would see different R1 for
each transition. Indeed we predict that the relaxation of
each component of the 15N doublet (doublet occurring



32 J. Sein et al. / Journal of Magnetic Resonance 186 (2007) 26–33
from the scalar coupling of 15N and its bound proton)
would occur (at 11.74 T, with sw = 6.6 · 10�8 s and
h0 = 11.2�) with decay rates of 0.294 and 0.036 s�1, while
the monoexponential decay rate calculated by neglecting
cross-correlation is 0.165 s�1.

However, in the solid-state, the protons form a dense
network of strongly dipolar coupled spins. This dipolar
bath, which also mediates ‘‘spin diffusion’’, leads to a phe-
nomenon known as ‘‘self decoupling’’ [29–32]. Notably,
self decoupling interchanges the a and b states of the N–
H doublet rapidly on the time scale of spin-lattice relaxa-
tion. Under static conditions, this effect can be large
enough to actually partially decouple the doublet. This
phenomenon is modified somewhat by magic angle spin-
ning (if the system were weakly coupled, it would be
removed by MAS), but, since the proton system is highly
homogeneous [31,33]. Ernst et al. have shown that even
under MAS the dominant residual term after averaging
of the proton homonuclear Hamiltonian has the form [31]:

H ð1ÞII ¼ �
i

xr

X
i 6¼j 6¼k

x0ijkI i;zðIþj I�k � I�j Iþk Þ ð12Þ

This Hamiltonian will also induce exchange between the
states of the NH doublet. Even for the rather weakly cou-
pled case of adamantane, spin diffusion rates on the order
of 300 s�1 were measured at 20 kHz MAS. As far as cross-
correlation is concerned, this mechanism effectively plays
the same role as applying p pulses during the relaxation de-
lay, a method introduced by Kay et al. and Boyd et al. to
suppress cross-correlation effects [34,35]. In consequence,
due to proton spin diffusion, the effects of cross-correlation

should be absent in N–H relaxation in protonated proteins.
(Indeed, we so far see no evidence for cross-correlation ef-
fects, to within the signal to noise of the data for Crh).

Note that Eq. (10) decays only as the inverse of the spin-
ning speed. Thus, it is unlikely that faster spinning will
have a large effect on this conclusion [31]. Similarly, apply-
ing homonuclear dipolar decoupling techniques to reduce
this effect does not appear currently practical over the
length of the relaxation delay required here. In contrast,
we would expect this effect to disappear in proteins con-
taining extremely high levels of deuteration [36,37], suffi-
cient to isolate the residual protons, and quench spin
diffusion processes on the timescale of the relaxation times
involved here (seconds). In this case, CSA/dipole cross-cor-
relation effects would reappear in the spectrum. Note how-
ever that moderate deuteration is not sufficient to stop spin
diffusion on this timescale.
5. Conclusion

The influence of the 15N CSA on 15N longitudinal relax-
ation in solid proteins under MAS was investigated. We
have calculated the influence of 15N CSA fluctuations on
longitudinal relaxation in the simple case where an axially
symmetric CSA tensor is aligned with the N–H bond vec-
tor. The more general case of an asymmetric CSA tensor
was also addressed, and can be simply accounted for.
The quantitative contribution of 15N CSA to longitudinal
relaxation was then estimated for an amide group in a pro-
tein, in powder form under MAS. This contribution was
determined to be typically of 20% and 33% of the overall
longitudinal relaxation rate, at 11.74 and 16.45 T, respec-
tively. Furthermore, we have used this improved relaxation
model to make an enhanced, quantitative analysis of the
site specific internal dynamics in the protein Crh, for diffu-
sion in a cone, using the EAS approach. We have observed
significant variations of the determined dynamic parame-
ters when properly accounting for the contribution of
15N CSA fluctuations. In general, diffusion times sw were
determined to be longer when including the effect of CSA.

Interestingly, CSA-Dipole cross-correlation is expected
to play little or no role in protonated solids, in direct con-
trast to the liquid state case.

In conclusion, the analysis presented here, together with
the 1H–15N nuclear Overhauser effects discussed previously
[11], provides a more complete and accurate picture of lon-
gitudinal 15N relaxation processes in solid proteins. This
should notably allow detailed dynamics studies of solids
proteins, using more interesting motional models, to be
carried out in the future.
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[3] N. Giraud, A. Böckmann, A. Lesage, F. Penin, M. Blackledge, L.
Emsley, Site-specific backbone dynamics from a crystalline protein by
solid-state NMR spectroscopy, J. Am. Chem. Soc. 126 (37) (2004)
11422–11423.

[4] M. Hologne, Z.J. Chen, B. Reif, Characterization of dynamic processes
using deuterium in uniformly H-2, C-13, N-15 enriched peptides by
MAS solid-state NMR, J. Magn. Reson. 179 (1) (2006) 20–28.

[5] M. Hologne, K. Faelber, A. Diehl, B. Reif, Characterization of
dynamics of perdeuterated proteins by MAS solid-state NMR, J. Am.
Chem. Soc. 127 (32) (2005) 11208–11209.

[6] J.L. Lorieau, A.E. McDermott, Conformational flexibility of a
microcrystalline globular protein: Order parameters by solid-state
NMR spectroscopy, J. Am. Chem. Soc. 128 (35) (2006) 11505–11512.

[7] B. Reif, Y. Xue, V. Agarwal, M.S. Pavlova, M. Hologne, A. Diehl,
Y.E. Ryabov, N.R. Skrynnikov, Protein side-chain dynamics
observed by solution- and solid-state NMR: Comparative analysis
of methyl H-2 relaxation data, J. Am. Chem. Soc. 128 (38) (2006)
12354–12355.

[8] A. Naito, S. Ganapathy, K. Akasaka, C.A. McDowell, Spin-lattice
relaxation of C-13 in solid amino-acids using the Cp-Mas technique,
J. Magn. Reson. 54 (2) (1983) 226–235.



J. Sein et al. / Journal of Magnetic Resonance 186 (2007) 26–33 33
[9] H.B.R. Cole, D. Torchia, An NMR study of the backbone dynamics
of staphylococcal nuclease in the crystalline state, Chem. Phys. 158
(2–3) (1991) 271–281.

[10] A. Krushelnitsky, D. Reichert, Solid-state NMR and protein
dynamics, Prog. Nucl. Magn. Reson. Spectrosc. 47 (1–2) (2005) 1–25.

[11] N. Giraud, J. Sein, G. Pintacuda, A. Böckmann, A. Lesage, M.
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Deutscher, A. Böckmann, Dimerization of Crh by reversible 3D
domain swapping induces structural adjustments to its monomeric
homologue HPr, J. Mol. Biol. 332 (2003) 767–776.
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